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Conclusions 

In the case of an orthorhombic crystal, the first and 
second partial derivatives of the lattice energy with 
respect to the cell parameters can be calculated by 
expressions like (16), where the repulsive coefficients brs 
and some of the charges z r are considered as unknown 
parameters. By substituting the results into (8) and (9) a 
set of nine equations is obtained, which can be solved to 
determine up to nine wanted parameters. 

A computer program (in Fortran IV) has been 
written to perform the calculations of the lattice-energy 
derivatives, using formulas (16)-(28)" the computing 
scheme follows that of MADEWA,  a program which 
calculates the electrostatic term of the lattice ene.rgy by 
Ewald series (Catti, 1978). The method developed here 
has been applied to forsterite, Mg2SiO 4, assuming as 
unknown parameters in the lattice-energy expression 
three repulsive coefficients plus the electric charge on 
the oxygen atom (Catti, 1981); the overdetermined 
system of nine equations has been solved by a numeric 
procedure of minimization of the sum of squared 
deviations. The convergence rates of the series (17)- 

(28) have proved to be comparable with those of the 
corresponding integral series F(x): as for the derivatives 
of the Ewald double sum, satisfactory results have been 
obtained using the same values of the parameter A 
which optimize the convergence of the Ewald series 
itself. 
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Abstract Introduction 

Two algorithms for the evaluation of even moments of 
the trigonometric structure factor are described. The 
first algorithm is based on conventional structure-factor 
algebra in the complex notation and is applicable to 
any space group with multiplicity of general positions 
not exceeding 24. The second algorithm, capable of 
dealing with all space groups, involves an interpretation 
of trigonometrical expressions input in a symbolic form 
and a programmed execution of algebraic and analytic 
operations. The results obtained in this study include the 
fourth and sixth moments of the trigonometric struc- 
ture factor for all 230 space groups. It is assumed that 
all the atoms occupy general positions. All the subsets 
of hkl indices giving rise to different forms of the 
trigonometric structure factor (except those for zones 
and rows) are considered. 

0567-7394/81/010076-05501.00 

Probability density functions of the structure amplitude 
IF I, which depend explicitly on the space-group 
symmetry and on the atomic composition of the 
asymmetric unit, were given by Karle & Hauptman 
(1953) and by Hauptman & Karle (1953) for centro- 
symmetric and non-centrosymmetric crystals respec- 
tively. Possible applications of these functions, which 
are asymptotic expansions in terms of the Wilson 
(1949) limiting distributions, to direct methods of phase 
determination have been discussed (Bertaut, 1955; 
Klug, 1958) and their application to intensity statistics 
investigated (Shmueli, 1979; Shmueli & Wilson, 1981). 
An obstacle that hindered an extensive application of 
these asymptotic expansions was, until recently, the 
necessity of obtaining the moments of the trigonometric 
structure factor for each space group considered. These 
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moments are required for the evaluation of the 
symmetry-dependent parts of the expansion co- 
efficients: for the nth expansion term, all the 
moments of the trigonometric structure factor, up to 
and including the 2nth moment, are required. 

The fourth moment of the trigonometric structure 
factor was evaluated (Wilson, 1978) for all the space 
groups but two, Fd3m and Fd3c. This development 
enables one to evaluate the second term of either of the 
above asymptotic expansions. The need for the third 
term, and hence the sixth moment, arose in a recent 
study of intensity statistics (Shmueli & Wilson, 1981). 
It soon became clear that hand computations of this 
quantity for a wide range of space groups are 
forbiddingly tedious and it was therefore deemed 
worthwhile to construct computer-oriented algorithms 
which will render such computations rapid and insen- 
sitive to human error. 

The purpose of this note is to present a description of 
these algorithms and to summarize the results obtained 
by their application to all the space groups. 

These algorithms were already applied to all the 
symmorphic space groups with P-type Bravais lattices 
and the results for the fourth and sixth moments, for 
these space groups, are listed by Shmueli & Wilson 
(1981). 

Description o f  the algorithms 

Our application of conventional structure-factor 
algebra, in the complex notation, to the computation of 
even moments of the trigonometric structure factor, will 
be illustrated below by the calculation of the fourth 
moment. 

The structure factor is given by 

F ( h ) :  ~fnJn(h) ,  (1) 
n 

where f,, is the scattering factor of atom n, Jn(h) is its 
trigonometric structure factor and the summation 
ranges over all the atoms that comprise the asymmetric 
unit. The expression for J,,(h) is 

J,,(h) = ,Y exp [2nihr(Ps r,, + ts)l, (2) 
$ 

where r,, is the position vector of atom n, located in a 
Wyckoff position with multiplicity p,,, h r = (hkl) is the 
diffraction vector and (Pslts) is a space-group 
operation. The summation in (2) ranges over all the 
space-group operations transforming r, to its 
symmetry-equivalent positions in the unit cell. In what 
follows, only the case of general Wyckoff positions will 
be dealt with and the subscript n will therefore be 
omitted. 

The average of I JI 4 taken over a large set of hkl 
values, or the fourth moment of JJI, can be written as 

( [ j i  4) : ( ( j j , ) 2 )  = ~" ~ Z Z ( e x p  i(~Ostuv + Ostuv)), 
s t u v 

(3) 

where 

~Pstuv = 2nhr(ps- Pt + P u -  Pv) r 

and 

Ostuv = 2 n h r ( t s -  t t + t u - tv). 

If all the components of r do not happen to be simple 
fractions, q~st,,v can be assumed to be uniformly 
distributed over the [0,2n] range. The above does not 
hold for Ostuv and hence exp (iOstuv), or COS (Ostuv) since 
(IJI 4) is real, must be evaluated explicitly for each 
subset of hkl values that may be of interest. The 
average of a term in (3) is thus given by 

2n if cos O~tuv (exp(i~ost,,v))= cos O~t,v ~-~ exp(i~0)d~0 

0 

for ~0st,, v ~ 0. (4) 

Under the above circumstances, the necessary and 
sufficient condition for tOst,, , to be identically zero is that 
P, - Pt + P,, - P~ be a zero matrix. The same condition 
applies to a term in the summation for any even 
moment of I J I, the only difference being in the number 
of rotation matrices which have to be combined in the 
expression for ~0. 

For symmorphic space groups, i.e. in the absence of 
non-zero space-group translations, cos(0st,,~) is unity 
throughout the summation and the fourth moment of 
I JI may be obtained by simply counting the terms in 
(3) with zero matrices, rather than by algebraic and 
analytic manipulations of the relevant trigonometric 
expressions. 

It therefore follows that any even moment of IJI for 
these space groups must of necessity be an integer. As 
pointed out by Wilson (1978) this fact is not evident 
from calculations involving an averaging of even 
powers of trigonometric functions which appear in the 
corresponding expansions of IJI 4. Wilson (1978) 
showed, by considerations involving the Patterson 
function, that the fourth moment of I JI must indeed be 
an integer, while the above result applies to any even 
moment. 

For non-symmorphic space groups, the translation- 
dependent cos(0~n,~) term may have to be evaluated 
separately for those subsets of hkl values which give 
rise to different functional forms of the real and 
imaginary parts of J (,4 and B in International Tables 
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Table 1. The first three even moments of the trigonometric structure factor 

The symbols p, q and r denote the second, fourth and sixth moments of I J I. The ratios q/p2 and r/p 3 are given as integers, exact decimal 
fractions or periodic decimal fractions. A dot above a digit indicates that this digit recurs indefinitely: e.g. 16.3195' = 16.31944 . . . .  16~ 
In all cases, the result can be transformed to a simple fraction and the integers q and r recalculated. 

Symmetry p 

Point group: 1 
P1 1 

Point group: 1 
PI 2 

Point groups: 2, m 
All P 2 
All C 4 

Point group: 2/m 
All P 4 
All C 8 

Point group: 222 
All P 4 
All C and I 8 
F222 16 

Point group: ram2 
All P 4 
All A, C and I 8 
From2 16 

Fdd2 I 1 o 
16 

Point group: mmm 
All P 8 
All C and I 16 
Fmmm 3 2 {32 
Fddd 32 

Point group: 4 
P4, P42 4 

P41* { 44 

14 8 

I4, { 88 

Point group: ,i, 
pzi 4 
IJ, 8 

Point group: 4/m 
All P 8 
14/m 16 

141/a'l" { 1616 

Point group: 422 
P422, P4212, P4222 

and P422,2 8 

P4122,, P41212, { 8 
8 

1422 16 

14122 116 
16 

Point group: 4ram 
All P 8 
14mm, I4cm 16 

I41md, 14~cd { 16 
16 

Point groups: zl2m, a, m2 
All P 8 
I$'2m, I4m2, I4c2 16 

I2~2d { 16 
16 

q/p2 r/p 3 Remarks$ Symmetry p q/p2 r / p 3  Remarks$ 

Point group: 4/mmm 
1 1 All  P 16 

I4/mmm, I4/mcm 32 

1-5 2.5 14~/amd, 14~/acd / 32 
32 

1.5 2.5 Point group: 3 
3 10 All P and R 3 1.6 

Point group: J 
2.25 6.25 All P and R 6 2.5 
4.5 25 Point group: 32 

All P and R 6 1.83 
1.75 4 Point group: 3m 
3.5 16 P3ml, P31m, R3m 6 1.83 
7 64 P3cl t 6 1.83 ,P31c, R3c ~ 6 1.83 

2.25 6.25 Poin_t group_: 3m 
4.5 25 P31m, P3ml, R3m 12 2.75 
9 100 P31c, P3cl, R3c {12 2.75 
9 100 (1) 12 2.75 
5 28 (2) 

3.375 15.625 
6.75 62.5 
3.5 250 
3.5 250 (1) 
7.5 70 (2) 

2.25 6.25 
2.25 6.25 (3) 
1.25 1.75 (4) 
4.5 25 
4.5 25 (5) 
2.5 7 (6) 

1-75 4 
3.5 16 

3.375 15.625 
6.75 62.5 
6.75 62.5 (7) 
3.75 17.5 (8) 

2.125 6.625 
2-125 6.625 (3) 
1.625 3.25 (4) 
4.25 26.5 
4.25 26.5 (7) 
3.25 13 (8) 

2.625 10 
5.25 40 
5.25 40 
3.25 13 

2.125 
4.25 
4.25 
3.25 

6.625 
26.5 
26.5 
13 

(7) 
(8) 

(5) 
(6) 

Point group: 6 
P6 

P61* 

P62" 

P63 

Point group: 
P6 

Point group: 6/m 
P6/m 

P63/m 

Point group: 622 
P622 

P6122" 

P6222" 

P6322 

Point group: 6mm 
P6mm 

P6cc 

P63cm, P63mc 

Poin_t group_: 6m2, (~2m 
P6m2, P62m 

P(~c 2, P6 2c 

Point group: 6/mmm 
P6/mmm 

P6/mcc 

6 { 6 
6 
6 
6 

{ 6  
6 

/ 6 
6 

6 

12 {12 
12 

12 
12 
12 
12 
12 
12 
12 
12 
12 

12 {12 
112 

12 

12 {12 
12 

24 
4 

24 P63/'ncm' P63/mmc 1 24 

3.9375 25 
7.875 100 
7.875 100 (5) 
4.875 32.5 (6) 

3.$, 

8.6i 

4.6i 

4.92i 
4.9J, (3) (P), (1) (R) 
4.24 (4) (P), (2) (R) 

12.36i 
12.36i (3) (P), (1) (R) 
10.69,i (4) (P), (2) (R) 

2.5 9.zi 
2.5 9.a, (9) 
1.5 2.524 (10) 
1.5 2.694 (11) 
2.5 7.7 (12) 

2.5 9.,i (13) 
1.5 2.694 (14) 
2.5 9.J, (3) 
2.5 7-4 (4) 

2.5 8.6i 

3.75 23.6i 
3.75 23.61 (3) 
3.75 19.4 (4) 

2.25 7.986i 
2.25 7.9861 (9) 
1.75 4.0069,i (10) 
1.75 4.04861 (11) 
2.25 7.5694 (12) 
2.25 7.986i (13) 
1.75 4.0486i (14) 
2.25 7.986i (3) 
2.25 7.5694 (4) 

2.75 13.4024 

2.75 13.4024 (3) 
2.75 10.0694 (4) 
2.75 13.4024 (3) 
2.75 i 1.3194 (4) 

2.75 12.36i 
2-75 12.361 (3) 
2.75 10.694 (4) 

4.125 33.5069a, 
4-125 33.50694 (3) 
4.125 25.17361 (4) 
4.125 33.50694 (3) 
4.125 28.2986i (4) 
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Table  1 (cont.) 

Symmetry p q/pZ r/p 3 Remarks$ Symmetry p q/p2 r /p3  Remarks + 

Point group: 23 Point group: ~,3m 
P23, P213 12 1.916 5.2"7 P43m 24 2.2083 8.9027 
123, I2~3 24 3.83 21.i / 24 2.2083 8.9027 (1) 
F23 48 7.6 84.~, P43n 24 2.2083 7.236i (2) 

12~3m 48 4.416 35.6i 
Point group: m3 ~ 48 4-416 35-61 (15); (20) 

Pm3, Pn3, Pa3 24 3. 125 16.319 j, I2~3d+ 48 4.416 28.9 j, (15); (21) 
Ira3, la3 48 6.25 65.27 I 48 3.75 19.27 (19) 
Fm3 96 12.5 261.1 F43m 96 8.83 142.4 

{96 12.5 261.i (I) { 
Fd3 96 10.5 161.1 (2) F43c 96 8.8J 142.4 (15) 

96 8.83 115.7 (18) 
Point group: m3m 

Point group: 432 
P432, P4232 24 2.2083 8.069 ~, Pm3m, Pn3m 48 3.8125 31.319 j, 

48 3.8125 31.3194 (1) 
24 2.2083 8.0694 (15) Pn3n, Pm3n 48 3.8125 24.6527 (2) 

P4~32*t 24 2.0416 6.194 (16) Im3m 96 7.625 125.27 
24 1.8750 4.8194 (17) 96 7.625 125.27 (15); (20) 
24 1.7083 3.94 (18) la3dt t 96 7.625 98.61 (15); (21) 

I432 48 4.416 32.27 I 4.416 96 5.625 46.94 (19) 
14~32t { 48 32.27 (15) Fm3m t 192 15.25 501. i 

48 3.75 19.27 (19) 
F432 96 8.83 129.1 rm3e / 192 15-25 501.i (1) 

/96  8.83 129.1 (15) "/192 15.25 394.J, (2) 
F4~32 [ 96 6.83 63.1 (18) Fd3m I 192 15.25 501. J (1) 

192 11.25 211.i (2) 
/ 192 15.25 501. i (1) Fd3c 

192 11.25 184.4 (2) 

* And the enantiomorphous space group. 
t One or more q values for this space group are inconsistent with those given by Wilson (1978) (see text). 
S Remarks: (l) h + k + l = 2 n ; ( 2 ) h + k + / = 2 n +  l;(3) l = 2 n ; ( 4 ) l = 2 n +  1;(5) 2 h + l = 2 n ; ( 6 ) 2 h + l = 2 n +  l;(7) 2 k + l = 2 n ;  

(8) 2k+ / = 2 n  + 1;(9) l = 6 n ; ( 1 0 ) l = 6 n  + 1,6n + 5 ; ( 1 1 ) l = 6 n  + 2, 6n + 4; (12) l = 6 n +  3; (13) l = 3 n ; ( 1 4 ) l = 3 n +  1;3n+ 2; 
(15) hkl all even; (16) only one index odd; (17) only one index even; (18) hkl all odd; (19) two indices odd, (20) h + k + l = 4n; 
( 2 1 ) h + k + l = 4 n +  2. 

f o r  X-ray  Crystallography, 1952) within the same 
space group. The procedure of  comput ing (IJI4> for a 
given subset of  hkl  is first to locate a term in (3) for 
which ~ostuv is zero and then to accumulate  the 
corresponding value of cos (Ostu~). Such a contribution 
may,  in general, have one of the values: 0, +½, +1,  
depending on the denominators  of  the fractional 
t ranslat ions present. The fact that  the fourth moment  of 
I JI  is invariably an integer is due to the inherent 
symmet ry  of  the summat ion  (3). 

An extension of  the above method to the calculation 
of  any even moment  of  I JI  is self-evident. 

The above method was successfully applied to the 
evaluation of  the fourth and sixth moments  of  I JI  for 
a large number  of  space groups,  with the multiplicity of  
general W y c k o f f  positions not exceeding 24. For  higher 
multiplicities the method was found to be too slow, 
mainly for the sixth moment ,  on which most  of  the 
computing time is spent. Thus,  the moments  (I J[  4) and 
<lJI6) for P 6 / m m m  (p  = 24) required about  2½ min 
computing time on a C D C 6 6 0 0  and the corresponding 
moments  for P m 3 m  (p  = 48) would call for about  ten 
times as much,  the symmet ry  of  the sixfold summat ion 
being allowed for. Some usual p rogramming  shortcuts,  

such as packing rotat ion matrices into single words and 
preliminary storage of  difference matrices,  were used. 

In the second algorithm, developed for the more 
extensive calculations, the expressions for A and B, 
taken directly from International  Tables f o r  X-ray  
Crystallography (1952), are employed. These ex- 
pressions are, if necessary,  t ransformed to sums of  
triple sine/cosine products.  Each triple product  is input 
in a symbolic form (e.g. cos 2rckx cos 2zthy sin 2nlz is 
read in as C K X C H Y S L Z )  which is decoded by the 
program.  The required powers of  the tr igonometric 
polynomials  are then evaluated, the terms containing 
odd powers of sines and /or  cosines are deleted and the 
remaining ones are averaged by appropria te  substi- 
tutions of  the integral 

2~ 

1 f (2m-- l)!!(2n-- 1)!! 
sin zm x cos z" x dx  = (2m + 2n)!! 

0 

m,n > 0, (5) 

where ( 2 k -  1)!] = 1 . 3 . . . ( 2 k -  1 ) a n d  (2k)!! = 
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2kk!, with the understanding that for, say, m = 0 
(5) reduces to (2n - 1)!!/(2n)!! 

The above procedure can readily cope with the 
calculation of (IJI 4) and ( IJI  6) for any space group. 
This symbol-handling procedure is also much faster 
than the first one. Thus, the values of (IJI  4) and (IJI  6) 
for the cubic system, the most complex one, including 
separate calculations for the various hkl subsets, have 
been obtained in less than 1½ min on a CDC6600.  
However, when the trigonometrical forms given for A 
and B need extensive rearrangements (e.g. for trigonal 
and hexagonal systems), the structure-factor algebraic 
procedure described above is preferable in practice. 

Results  

The fourth and sixth moments of the trigonometric 
structure factor were computed for all 230 space 
groups and the results are summarized in Table 1. 

Since the symmetry-dependent coefficients required 
for the evaluation of moments and distributions of the 
normalized structure factor depend on the ratios q/p2 
and r/p 3, where p = (IJI2),  q = (IJI4),  r = (IJI  6) 
(Shmueli & Wilson, 1981), and these ratios, rather than 
the individual moments, are likely to be of use, the 
results are presented in their terms. Of course, q and r 
can be readily found since p is given for each entry. 

It was assumed throughout the calculation that all 
the atoms occupy general positions and all the subsets 
of hkl (except those corresponding to zones and rows), 
giving rise to different functional forms of A and B, 
were considered. The absence of any remark beside an 
entry in Table 1 means that all the space groups and/or 
all the above mentioned subsets of hkl corresponding to 
this entry lead to identical values ofp, q and r. 

In the comparison of our results for q with those 
obtained by Wilson (1978) it is appropriate to point out 
that his results were obtained without the aid of a 
computer and that the possibility of his tables contain- 
ing some errors was emphasized (cf. §1.7: Wilson, 
1978). The comparison showed a single numerical 
discrepancy (I41/a), one inconsistent association of a q 
value with an hkl subset (P4~32) and two more q 
values for P4132 not given by Wilson (1978). Also 
Wilson's values of q for I4132, I43d and la3d, unlike 
the other entries in his Table 3 (Wilson, 1978), are not 
the average q values but coincide with ours for the 'hkl 
all even' case. For all the rest, there is an exact 
agreement regarding q values for primitive space 
groups and average q values for the centered ones. The 
values of q for the space groups Fd3m and Fd3c, not 
given by Wilson (1978), were supplied in this Work. 

Corresponding results for the eighth moment of IJI 
can now also be computed and will be reported later. 
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Abstract  

Two types of twins are frequently found in naturally 
and experimentally deformed kyanite. Structural 

* Present address: Service Thermique, DERC Ferodo, 4, rue 
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models based on periodic shears are proposed to 
account for these mechanical twins. The structure of 
kyanite is then regarded as layered, the limits of each 
layer being easy glide planes for dislocations. The shear 
plane is (100). The shear vectors are ½ [001] and 
½ [011]. They are suitable for the only known glide 
system (I00)[001 ]. 
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